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1. Basic equations and dimensionlesm parameters. The system of gaa dy- 
nuaicm equationa describing the steady-state motion of an ideal gas with radiation in a 
spherically symmetrical gravitational field cau be written as [I] 

dU 1 dP GiU 
Udr ----Fz-ra 

(1.1) 

(1.21 

P = pRT + F, R = k (2X f- 0.75Y + 0.52) (1.41 

*Q 
are the 

eri$~i~‘tl? zd&s; II is g 
ressnre, specific energy, temperature, and density of the mat- 
e velocity; R is the specific gas constant; o is the radiation 

energy density constant; x is the coefficient of thermal conductivity; /A is the mass flux di- 
vided by IQ, which is considered constant; c is the speed of light; x is the opacity; the 
weight concentrations of hydrogen, helium, and heavy elements are X, Y, Z, respectively 
(the material is assumed to be completely ionized); k is the Boltzmann constant; mp is the 
proton mass. If the opacity is due solely to scattering by the electrons, then x = 0.19(1+ Xl. 
In future, we shall carry out our calculations for g’ = const. If there are no energy sources 
in the flux, then system (1.1) to (1.41 csn be integrated once. We obtain the system of equa- 
tions 

-p(e+$- ++$)+5r+_& 
du 1 dP GM 

udr--pdr 
-- 

yl I pur= = lh (1.51 

Here L im the total energy flux. If the flux is negli ‘bly small, then L is the energy trans- 
fer due to heat conduction. Syatem (1.5) is derived in 2 and 31. We shall attempt to find a P 
solution of system (1.51, which satisfies the conditions p = T = 0 at infinity. Such a solution 
which also satisfies the conditions at the surface boundPry of a star, describes the actual 
efflux from a star. Making use of the expressions for b and P from (1.41, we rewrite (1.5) as 

(1.6) 
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dT 
dr - era “‘+&+(+RT-++&-&I (1.7) 

From gas dynamics we know [2] that solution (1.61, (1.7) satisfies the condition p= 0 
at infinity provided it passes through the singular point of Eq. (1.6) determined by the rela- 
tion RT, /pk = p2/pk3r,t4 and by the condition that the right-hand side of Eq. (1.6) equals 
zero. At this point the velocity is equal to the isothermal speed of sound. The point T = 0, 
p = 0, r = m is likewise a singular point for system (1.61, (1.7). In the limiting case X-B m, 
system (1.61, (1.7) describes adiabatic flow and degenerates into algebraic relations. The 
two singular points of system (1.61, (1.7) for x= 00 abruptly become a single point at which 
the velocity is equal to the adiabatic speed of sound. The solution of system (1.61, (1.7) 
which satisfies the conditions p = T = 0 for r = 00 gradually becomes the limiting solution 
for X = 00. 

Let us convert to the independent variable 1: = l/r and introduce the dimensionless vari- 
ables 

2*=x/xk’ P* =PIP)&* T* = T/T, (1.8) 
Substituting variables and making use of the first relation at the critical point, we ob- 

tain a system of equations in p l , T * with the independent variable x*. This system incln- 
des the following dimensionless parameters: 

4aTr3 3Xp Pk R CM 
iJ1 = 3pkR 1 

3xL P& -- Az=~<T, As-_~RT, I A=- 16nac m (1.91 

Since ,u =dRTkpkrk2, it follows that A, = 3~R~/~p~~r,/k7~T,~/~. The second condi- 
tion at the critical point z* = p l = T + = 1 imposes a single constraint on the parameters, 

As-2 
A~=Az(3+A1--s)+~ 

Thus, the system of equations in dimensionless form can be written as 

$= (+(A$+i){$(A1$+2.5T-A@+0.5$)- 

Aa(3+A1-As)+ +$]}-As)($+,” 

(1.101 

(1.111 

dT 
--- 

dx - -$(A1$+2.5T-AA,r+0.5$) +&[Aa(3+A1-As)+$$] 

(1.12) 
where the asterisk has been omitted for simplicity. 

Henceforth, unless otherwise stipulated, we shall make use of dimensionless variables 
only. The solution will satisfy the conditions x = 
among the parameters Ai, A, A 

p = T = 0 given a certain relationship 

d 
. 

A, and one solution sattsfying 
Each pair of parameters At, A2 is associated with one 

e zero conditions at infinity. The solution passing through 
the singular points z = T = p = 1 has at this point the expansion 

T = 1-t B1(1 - t)+Bz(1-Z)*+Ba(i--s)s, P=1+al (1--2)-+a,(i-z)* 

As-2 
8r= - 1 + A1 v 

1 
a1 = 4 

{ 

As-2 
AZ (I+ A# + 2 If - 8 -_(Aaa (I+ Al)‘+ 

+4[4+7(=)‘+ Aa(Aa - 2)(4 + 7A1) -8$$-4Aa(l +AI)~])“‘} 

Pa = - S~[As(3111+~)+3~]-S[Aa(l+Al)+~~~]a1 

%= 3Aa 
-i ( l+A+ (Aa-2)a)-6-[3Aa(2~-2A1a+~)+6A~]X l+A1 

~(&~)‘+[Aa(A~+2+4A~)-~8-Aa(~+3A1-4A1”)~- 
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+ [Ax(l fA&f4AI) +3~~]~a+%(l%-5a1x)} X 

As- 2 -1 

Az(l +A#+31 + A, - - 12 - 6ar 1 
(As - 212 Ps=A++ 1 +A1 )-[An(2AI+%)+2~](~j2+ 

+ ~[~~(~~+2)-3(~~)~-.-Ip (&3A1)$$]~lf~~z~l’+ 

+$[At(~+4.‘,1)+3~]P~-~[A,(1+A,)+~]cra (1.13) 

The solution passing through the point z = T = p = 0 admits of several exoansions (y. 
is arbitrary), 

P = -w+, T = 8ox”4, &,= (~)“‘[~+..ll(Al+~-_A.)_~]“’ (1.14) 

or, if the term in square brackets in (1.14) is equal to zero, 

p = ~,,z*, T = 802, To = $=-; + AZ (A1 + 3 - As)]-“*, 60 = (0.5ArTo)“’ (““) 

The questron of which of expansions (1.14), (1.15) corresponds to the solution satisfy- 
ing the zero conditions at infinity and passing through the point x = p = T = 1 requires fur 
ther study. In r4] only an expansion of the (1.14) type is considered for z + 0. Conditions 
(1.13) imply the restriction A, > 2. This restriction is valid for all A,, A 2. 

2. Limit in g cases. Let us consider the following limiting cases. 
a) Let A, = 0. This case corresponds to the condition k= 0, i.e. to formally infinite 

heat conductivity. The system of equations becomes 

dP 2(xa/pr-- ~)~[(As--~)/(~+A~)I(P/T~--~) dT 
-= 
dz Z'ipa-Tlp 

__As-_ (2.1) 
, dz - i + A1 Ta 

This system depends on the single parameter B = (A, - 2)/(1 + Al). Proceedin from the 
singular point .x = T = p = 1 in expansion (1.13) for A, = 0 and solving system (2.1 B numeri- 
tally, we find that the solution passes through the point z = T = p = 0 for B = 0.8186. 

Hence we have 

A, = 2 + (1 + A,) 0.8186 (2.2) 

Formally, this solution has no physical meaning, since it corresponds to the case L = = 
or to infinite heat conductivity. Nevertheless, Formula (2.2) can be used for the approximate 
determination of A, for a large heat conductivity, large thermal fluxes, and small A,. For 
large x the required solution has the asymptotic form 

p - 0.30325, T = 0.705 z (2.3) 

b) Let A, =oo. This case corresponds either to zero heat conductivity or to adiaba- 
tic flow. The solution can be written in finite form, 

AIF + GT--A~z +1E=3+Ar-AAa, 
2 P" 

In~+A,($--i)=o (2.4) 

The first relation of (2.4) is the Bernoulli equation written in dimensionless form; the 
second means that entropy is constant over the flow. The solution satisfying the conditions 
x = T = p = 0 must pass through the point where the velocity is equal to the adiabatic speed 
of sound. The conditions of passage through this point are given in [s]. In dimensionless 
form they are 

xa2 AS (1 + AITaS / P,)~ 
p,a”F* 

Ax,, 
’ + 1.5 + 3A1TaS/p, = 2T, 

(2.5) 

Here xQ, T,, pa are the values of the dimensionless parameters at the point where the 
velocity is equal to the adiabatic speed of sound, II q2= yP/p. In deriving (2.5) we made 
use of the expression for the y= (d In P/J In pIS of an ideal gas with radiation 6 is the 
specific entropy), 
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i (1 +ArTa/~Y 

'=1+A1T8/4p ' + 1.5 + ~AIT~)Q 1 (2.6) 
Together with (2.4) written out for the point zll, relations (2.5) determine A,, za, T,, pa 

as functions of At. Sample values of these parameters appear in Table 1. 

Table 1 

Al 1 
ib \ (iO~~700 54oplo 5. w 

AS 9.803.108 4.876.108 9.588a102 1 666,O 474.9 187,5 

%z 2.721,10-e 3.469*10-a 6.173.10-e I 0.07033 0.07962 0.1122 

Pa 6.413.1O-6 1.309.10-4 7.005.40-4 / 1.021.10-s 1.458.10-s 3.878.10-s 

To 4.002.10-a 5.076.10-a 8.870.%,-a 0.1005 0.1131 0.1564 

At I 100 1 50 1 20 1 15 1 10 1 9.5 1 9 

I f I L I , 

A3 

xo 

pa 

Tu 

Al I 

I - 

93.20 

0.1459 
8.161.10-a 

0.1997 

8.6 

T - 0.5 

3.412 

0.4705 

0.2471 

0.4754 

In writing out (2.5 

9.785 
0.3544 

0.0954 

0.4362 

5 

6.883 

0.4112 

0 * 1422 

0.4892 

46.84 99.75 15.36 11.055 10.63 10.21 

0.1898 0.2663 0.2946 0.3371 0.3425 0.3482 

0.01709 0.04373 0.05768 0.08319 0.08692 0.09098 

0.2541 0.3431 0.3742 0.4186 0.4242 0.4301 

8 1 7.5 1 7 1 6.5 1 6 1 5.5 

9.365 8.946 8.529 8.114 7.701 7.291 

0.3611 0.3680 0.3754 0.3833 0.3919 0.4012 

0.1002 0.1055 0.1114 0.1179 0.1251 0.1331 

0.4426 0.4494 0.4566 0.4641 0.4722 0.4604 

4.5 I I 1 3.5 1 3 1 2 1 1 

6.478 6.076 5.677 5.283 4.509 3.767 

0.4211 0 &335 0.4460 0.4596 0.4686 0.5074 

0.1522 0.1637 0.1768 0.1917 0.2275 0.2635 

0.4985 0.5082 0.5181 0.5282 0.5456 0.5388 

0.4 I 0.3 I O2 O-i4 1 0.13 1 0.m 

3.342 3.269 3.192 3.1396 3.130 3.128 

0.4399 0.3902 0.3043 0.1023 0.02084 0 

0.2267 0.1907 0.1329 0.02614 2.671.1O-3 0 
0.4381 0.3817 0.2756 0.09330 0.01957 0 

ve assumed that in a stream of material setisfying the conditions x = . _. . _ 
= 2’ = p = 0, the flow at infinity must be supersonic. In this case there exists a point xa 
where the adiabatic velocity of sound is attained. However, there exists a class of polytro- 
pit flows in the spherically symmetrical gravitational field of a constant mass where pas- 
sage through the speed of sound is impossible. These are polytropic flows with indices n > 
> 1.5. Flow with n = 1.5 is degenerate and proceeds at a constant Mach number [S]. Polytro- 
pit flow with n = 1.5 is limiting as A, + 0 for solution (2.4). For A, = 0 there exists sn 
exact solution satisfying the conditions A, = 3, p = x 3/2, 7’ = x at infinity. The Mach num- 
ber in such a flux is 3/S; the velocity is always equal to the isothermal speed of sound. For 
a sufficiently small A, d 0 there is no passage through the adiabatic speed of sound. This 
is reflected in the fact that for sufficiently small A, there is no solution of algebraic system 

A 
!k%o(v??~!rk~ ~$~%?&rkl~a,A + A 

Let us find the limiting value of A for which 

yield xa -+ 0. Then, by virtue of the reskctiok A, 
the solution of system (2.& (2.5) 

that pa+ u+~o~/~, 
?2, we find from the first reladon of (yi)t 

while the second relation of (2.51 is fulfilled for *;s+ 0 if T -+ fl?,. Sub- 
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stituting these expansion8 into (2.4), (2.5) and retaining the leading terms, we obtain 

As = 3 + At, IG(~&~, fi=$[3+Ar), 3+At=2(+~eA1~8 (2.7) 

The fast relation of(2.7) yields the value At,, = 0.128. 
For A, <A,, we have Aa = 3 + A,; for x + 0 the asymptotic solution is of the form 

p z ax’lt, T z @x, p = a’lae”‘13 
, ( 

= UC 
A, 

(2.8) 

For A, > A,, the quantity A, is determined by the simultaneous solution of system 
(2.4), (2.5); asymptotically, th; solution for % -D 0 is of the form 

pxaz’, TG@ ‘, EC = [2 (3 + A1 - As)]“‘, p = a’iaeBA*/3 (2.9) 

Comparison of (2.8) and (2.9) with (1.14) and (1.15) indicates that for 8ny A, as A, += 
the asymptotic form changes as 1: + 0. Existence of a limiting A ln shows that p8ssage 
through the adiabatic speed of sound fs 
to gas pressure is not smaller than A,, P 

ossible only if the ratio of the radiation pressure 
4= 0.032 at the point where the isothermal speed 

of sound is reached. This follows from the definition of A, in (1.9). 
For large At the solution satisfying the condition8 I: = p = T = 0 is obtained for 

Aa = A, + 3 - ;2j (3Ap) 

In the subsonic range for large At the approximate solution is of the form TG x, 
ti 

For 0 < A, < 00 the asymptotic form for 1:: x is 

T zs si&,;o: (lxt x)-l, p ti (8/&itAaszs (In 2)-’ 

3. Solution of the probIam in the general case. In order to solve system 
(1.11). (1.12) in th e general c8se we must proceed from the singular point % = p = 2’ = 1 ac- 
cording to expansion formulae (1.13) and integrate system fl.ll), (1.12) numerically, Tahing 
Ar sndA3forasingfeA ,weobt~nT=p=Owhenx=O.Sin~e~epoint%=p=T=Ois 
stngnlar, tt follows that or arbitrary A, the solution behaves nonanalytically. For A, smal- ? 
ler than that sought, T > 0 for x f: 0. For larger A, we have T = 0 for PT, %T > 0. In the 
neighborhood of the point 7’= 0, pT# %T > 0 system (l.ll), (1.12) has the asymptotic form 

The solution is of the form 

% = “T + ((P14P,) TP, 
?*hne, for large A, the integral curves T(z), p(r) lie in the domain % > %T. The values of 

A, as determined by A t and A, for which the conditions % = p = T = 0 are fulfilled appeer 
in Table 2. From Table 2 WC see that for a fixed At the values of A, change little with 
changes in A . For A, > A,, the function A,(A.J is monotonous. Consideration of Formula 
(2.2) and ‘fades 1 and 2 yields the following observations. The derivative fd A 
positive for At Z A In along the 8OhtiOnS satisfying the conditions at infinity. 9 

/dA.JA t is 
n the inter 

val 3 < A f < 3.5 this derivative as 8 function of A, passes through identical zero and be- 
comes negative. In the interval 8 < At < 8.5 the derivative as a function of A 
passes through identical zero and is always positive for large A . 

once again 
For At < d, the depen- 

dence of A, on A, is nonmonotonous. For small A, we find that faAJdA2)A1 > 0; then, at 
A ~10 for A en 0 the derivative changes sign and remains negative 811 the way to A 
dere the derifvative (aA 8/aA P)A chaagcs sign the quautity A 2 inaeases monotonous y 
with At and becomes infinite for ?lt = At,, . 

1 
= m. 

When A, < At,,, beginning with some A zn 
ic for A, > A 

dependent on A, the flow at infinity is subson- 

is given by t2” 
, while for A, = A,, we have A, r: cm. In the case A, > A, the quantity A, 

e relation 

A,=Aa(3+&-&)+;~=@ (3.1) 

The tot81 energy flux carried to infinity is equal to zero, The asymptotic form at the 
point x = 0 is of the form 

z as’/* T Z@Bz, #i =?$ (A8 - 0.5 I aa) 

Here a is ubitrfry. At ie point A,, the derivetfve (aAj/aA,)A t is negative and eqd8k 
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Table 2 

0.01 

3!i6 
5.10-4 5.10_’ 0.01 0.01 

3.%6 3!zY2 2o:k45 2.:55 

AI 0 
-4 
% 8:L 
Al 0.01 
AZ 
A3 3YE 
Al 1 
A2 
As Ah 

‘41 5 
AZ 
Aa 6!i5 

A1 
AZ 02002 
As 19148 

AI 
2 92:95 ;O! 

0.5 I 0.5 1 0.5 

3.131 3.\!5 3% 

8.: 0.1 0.1 0.1 0.1 

2:92 32 3.11025 3.21023 3.51”3 

: : 1 1 2 

3.722 3.756 3%3 3.%5 4!49 

0.1 0.5 

3!z3 3%7 
I I 
I I 

0.:2 
5 

I I 

5 

6.907 ;:A96 :::90 

3 3 

5.\8 5.;81 

E 
6.883 

c% 
15:35 

50 
;?2 

92:15 
?!2 5.5po-4 a5001 o5002 

19.11 44.1 45172 46112 

200 200 200 200 
10-4 5.10-4 0.01 0.05 

170.7 176.2 185.2 187.1 

loo loo 
10-4 5.10-4 
85.2 86.8 

500 700 700 
0.01 10-a j - 10m3 :05 
472.2 626 664 906.5 

0.01 
46.68 

500 
10-p 

439.5 
1;: 

943.5 

to the corresponding quantity computed from Formula (3.1). For A, > A 
Tr 

it is always the 
case that A, > 3. The solution with subsonic flow at infinity 
tion state considered in [7] 9 

correspon s to the evapora- 

In order to apply the above solution to efflux from the corona of a red giant it is neces- 
sary to know the solution in the subsonic range. To find this solution for a known A&A 
A,) it is necessary to proceed from the point x = p = T = 1 according to Formulas (1.13f kd 

velocity or the ratio of the flow rate 
to the isothermal speed of sound. Table 3 contains the values of x, p, 7’ for u = l/6, l/IO, 

Table 3 
- 

- 

Al 0.1 0.1 

AZ 0.1 1 

-43 2.92 3.03 

0.1 

10 

3.125 

0.1 

370 

0.5 

0.1 

3.247 

0.5 

1 

3.34 

0.5 

10 

3.405 

- 
0.5 

3.;2 
- 

8.10 

6!:5 

28.3 96.3 
1020 7320 
22.2 57.9 

1.11~i3104 
70.9 

9.10 21.7 36.6 42.3 
187 1090 1950 2170 
1.08 17.8 23.3 24.5 

13.9 77.6 222 280 16.9 61.9 84.1 
581 8260 4.56.10’ 6.70.10‘ 808 6480 1.08.1or 

11.1 52.7 116 131 12.6 35.1 44.2 

I 
89.6 

1.18.104 
46.1 

30.2 263 596 722 42.6 166 
3742 1.14.105 4.34.1Or 5.96.105 6140 6.1.10’ 

23.9 147 268 306 29.0 80.8 

224 

:z 

49.9 1205 281 369 
1.20.101 2.0.10s 2.11.10s 3.29.1W 
39.0 415 127 155 

continued 
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Table 3, continued 

Al 
A2 
‘43 

i 

22.3 
198 
13.9 

19.3 46.2 
1020 4200 
13.4 25.9 

1 1 

5 

3.756 3.G 

24.8 27.1 
950 1099 
15.1 16.1 

51.2 55.2 
4940 5E 21.9 . 

48.4 114 125 133 
8550 3.5*/04 4.03.104 4.48.104 
29.9 56.2 59.9 62.7 

82.8 
2.98.10’ 

41.1 

204 216 
19;.;05 1.43.1or 

95.3 

1 

1 

3.722 

- 

- 

5 

3.02 

5.907 

7.64 9.01 9.76 10.0 
146 191 228 228 

5.74 6.48 6.87 7.00 

12.7 15.55 17.0 17.5 
536 747 864 907 
9.05 10.5 11.2 11.4 

25.1 31.8 34.9 35.9 
3070 4540 5290 5555 
16.7 19.8 21.1 21.6 

37.3 
8539 
23.95 , 

41.8 52.4 53.9 
1.28-10* 1.49-204 1.57.104 

28.5 30.4 31 .o 

- 

5 

0.1 

6.896’ 

- 

- 

5 

6.;3 

l/20, l/30 for certain values of At, A,. 
For A, = 0 we have A, = 0.8186(1+ A, I+ 2; given below are the values of the dimen- 

sionless solution p(x) and T(r) (th e same for all At) for various values of l/u and x: 

Table 4 
l/v = 2 

x=2.32 4459 
4i.9 

6i3 9% A24 ii48 
P = 7.59 ii4 358 533 743 
T=2.02 3.68 5.07 6.31 1.45 8.51 9.51 

l/v = 16 ia 20 
x =: 14.2 15.4 16.7 2f2 2F4 2F5 2?5 

p=991 z 1590 z 3735 5460 T = 10.5 12.3 16.3 18.5 :t?i 

l/v =46 
r = 30.4 RY2 3?6 4701)8 4r7 4?5 5;!! 
P==9080 2.15.10‘ 2.83.i01 
T = 21.9 ‘%:i”’ 1.5L.13o’ 29.2 32.0 “%::“’ 4%o’ 

If the initial conditions (e.g. in the stellar corona) are known, then the resulting solu- 
tion enables one to determine the mass flux. A complete solution requires knowledge of 
three of the following quantities: L, rn, To, PO, oo. The remaining two quantities are not 
independent. Expressing these dimensional quantities in terms of dimensionless quantit- 
ies and parameters, we obtain 

4ncGM Al A4 
L=xx 

(3.21 

Determining the dimensionless parameters A 
uol, making use of (1.10) and (2.21, and Tables Y 

A,, x from three quantities (e.g., L, rW 

and determined the mass flux. 
to 4, we obtain the initial values p. and T, 

(3.3) 

The author is grateful to 1a.B. Zel’dovich and I.D. Novikov for their interest in the pres- 
ent study. 
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THE LIMITING MOISTURE PROFILE DURING INFILTRATION 

IN TO A HOMOGENEDUS SOIL 

Pivw Yoi. 31, No. 4, 1967, pp. 770-776 

N.V. KHUSNYTDINOVA 
(Novosibirsk) 

(Recdued November 18, 1966) 

The present paper deals with a quasilinear second order parabolic equation describing an 
unsteady one-dimensional infiltration and investigates the time asymptotic of the solution 
of the probls m of formation of moisture saturation profile when the infiltration struts at the 
surface.. The existence of a limiting profile expanding with a constant velocity is proved 
and estimates are given for the speed of approach to this profile with increasing time, when 
the soil has unlimited capacity, An estimate of the speed of approach to the steady (homo- 
geneous) distribution is also given for the soil of limited capacity. 

During the infiltration into a homogeneous soil, moisture uft, x) of the soil being a func- 
tion of time t and of depth x of the layer (the X-axis is directed downwards), satisfies an 
equation of the type 

(1) 

fi(u)>O, Rfu)>O, D(u)>% K’(u)>% ~“@)>P>Owh(u>uo>Of 
Taking into account initial moisture distribution in the soil and infiltration on the sur- 

face of the ground, we obtain the following boundary condition: 

n 0, 0) = u1 (t > O), u (8, 2) = UI (x) (8 6 x < oo) 

~0 ( uo (2) < ul (lim Q (2) = ud when -++oo) (2) 
Here ut = 1 denotes the moisture corresponding to full saturation of soil on the earth 

surface. 
In the presence of ground water at the depth x = X, 

form 
our boundary condition assumes the 

Y (t, 0) = Ur, u (t, X) = ur, u (0, 5) = y (2) 

o<x+dx, uoa~(x)dul (3) 
The problem of determination of the limiting moisture profile during infiltration into the 


