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1. Basic equations and dimensionless parameters. The system of gas dy-

namics equations describing the steady-state motion of an ideal gas with radiation in a
spherically symmetrical gravitational field can be written as [1]

du _ _1dP GM (LD
“ar = p dr r?
dE P db o 1 d,dT) 4ooT? w2
P“F-Tuzr—_k—r’—ir_(h’dr , A= 3xp
purt = (1.3)
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Here P, E, T, p are the pressure, specific energy, temperature, and density of the mat-
erial; r is the ndﬁm; u is the velocity; R is the specific gas constant; ¢ is the radiation
energy density constant; A is the coefficient of thermal conductivity; ¢ is the mass flux di-
vided by 4m, which is considered constant; ¢ is the speed of light; % is the opacity; the
weight concentrations of hydrogen, helium, and heavy elements are X, Y, Z, respectively
(the material is assumed to be completely ionized); k is the Boltzmann constant; m is the
proton mass. If the opacity is due solely to scattering by the electrons, then %= 0.19(1 + X),
In future, we shall carry out our calculations for %= const. If there are no energy sources

in the flux, then system (1.1) to (1.4) can be integrated once. We obtain the system of equa-
tions

P GM u? a7 L
—**(E+‘;r— )+ ==
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u—dT=—TT_-rT-' purt = (1.5)

Here L is the total energy flux. If the flux is negligibly small, then L is the energy trans-
fer due to heat conduction. System (1.5) is derived in {2 and 3]. We shall attempt to find a
solution of system (1.5), which satisfies the conditions p= T = 0 at infinity. Such a solution
which also satisfies the conditions at the surface boundary of a star, describes the actual
efflux from a star, Making use of the expresaions for E and P from (1. 4), we rewrite (1.5) as

RT p?\ dp
(_p_ - W) += (1.6)
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dar unT 3xp 5 GM pd L
T = o+ g (7 BT — S+ o)~ 4.

From gas dynamics we know [2] that solution (1.6), (1.7) satisfies the condition p= 0
at infinity provided it passes through the singular point of Eq. (1.6) determined by the rela-
tion RTy /p, = 12/p,3r,* and by the condition that the right-hand side of Eq. (1.6) equals
zero. At this point the velocity is equal to the isothermal speed of sound. The point T = 0,

= 0, r=oo is likewise a singular point for system (1.6), (1.7), In the limiting case % o,
system (1.6), (1.7) describes adiabatic flow and degenerates into algebraic relations. The
two singular points of system (1.6}, (1.7) for x = oo abruptly become a single point at which
the velocity is equal to the adiabatic speed of sound. The solution of system (1.6), (1.7)
which satisfies the conditions p= T = 0 for r = = gradually becomes the limiting solution
for % = o0,

Let us convert to the independent variable x = 1/r and introduce the dimensionless vari-
ables
r=z/z, pt=p/pp T*=T/T, (1.8)

Substituting variables and making use of the first relation at the critical point, we ob-
tain a system of equations in p*, T'* with the independent variable x*. This system inclu-
des the following dimensionless parameters:

. 46Tk3 3np &r_ R GM 3xL Py
A= 3p, R’ A= 750 re T3 Ay = r AT, ' A= Tgrs0 % (1.9)

Since yt =/ RTy pr i3, it follows that 4, = 3xR3/2p,2r, /49¢T;5/2. The second condi-
tion at the critical point x* = p* = T * = 1 imposes a single constraint on the parameters,

Ag—2
Ay = A3(3 + A1 — Ag) + —1‘—Al— (1.10)

Thus, the system of equations in dimensionless form can be written as

o (E_(A‘—Ts_m){ﬂ(m%+2.5T-A,z+o.5%) -

dz . \p? p ™
s Ag—2 A (1.11)
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(1.12)

where the asterisk has been omitted for simplicity.

Henceforth, unless otherwise stipulated, we shall make use of dimensionless variables
only. The solution will satisfy the conditions x= p= T = 0 given a certain relationship
among the parameters 4y, Ay A Each pair of parameters 4, 4, is associated with one
A; and one solution satisfying the zero conditions at infinity. The solution passing through
the singular points x = T = p = 1 has at this point the expansion

Twl+phA—2+BU—2f+pl—2? p=1+a 1—2)+a{— 22

131=_111;A?;, a,:%{Az(i+A1)2+2i‘—1‘:_;Af—8——(A,’(1+A1)‘+
+4[4+7(f8——£)2+Aa(As — (4 + 74) —Sﬁf—l—f—%“ +Al>’])%}
B,:--;—?ﬁ[A, (3A1+%)+31£:*_—1721]——;'[A2(1+Al)+f:_——‘fl]“l
M={3A2(1+Al+(‘f°+—_1421)2)—6—[3,4,(2/11——2m’+%)+6fa+—_A?;]><
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The solution passing through the point x = T = p = 0 admits of several expansions (y,

is arbitrary),

4'}’0 s As —2 As e
— — 8z —_ (=2 - A P _ (1.14)
p="7022, T =208/, 8= ( 3 ) [1 Al+.12(A1+3 As) 2T02]

or, if the tem in square brackets in (1.14) is equalto zero,

)+

Ag\T[ A5 —2 /2 .
= 7122, T = 8oz, Yo =<~2—2) [—1 s+ yH 4 Aa (A1 +3— As):! , 86 = (0.54a70)"s (1.15)

The question of which of expansions (1.14), (1.15) cormresponds to the solution satisfy-
ing the zero conditions at infinity and passing through the point x = p= T = 1 requires fur-
ther study. In 4] only an expansion of the (1.14) type is considered for x + 0. Conditions
(1.13) imply the restriction 4; > 2. This restriction is valid for all 4;, 4,.

2. Limiting cases. Let us consider the following limiting cases.
a) Let A; = 0. This case corresponds to the condition %= 0, i.e. to formally infinite
heat conductivity, The system of equations becomes

dp  2(z®/p2—1) 4 [(4s—2) /(1 +- A)](p/T*—1) dT _As—2p (9
dzr = AjpE—T [p ' dz T 14 A4, T®
This system depends on the single parameter B = (4; — 2)/(1 + 4,). Proceeding from the
singular point x = T = p= 1 in expansion (1.13) for 4, = 0 and solving system (2.l§ numeri-
cally, we find that the solution passes through the point x =T = p= 0 for B = 0.8186.
Hence we have

A; =24 (14 4,)0.8186 (2.2)
Formally, this solution has no physical meaning, since it corresponds to the case L =00
or to infinite heat conductivity. Nevertheless, Formula (2.2) can be used for the approximate
determination of A3 for a large heat conductivity, large thermal fluxes, and small 45. For
large x the required solution has the asymptotic form
p = 0.3032%, T =0.705 = (2.3)
b) Let A, =o00. This case corresponds either to zero heat conductivity or to adiaba-
tic flow. The solution can be written in finite form,
T4 5 1 kE T3
Alp_+§T—Aax+?'5;'=3+A1—A3, lnTT-}—Al(?—l):O (2.4)
The first relation of (2.4) is the Bernoulli equation written in dimensionless form; the
second means that entropy is constant over the flow. The solution satisfying the conditions
% =T = p= 0 must pass through the point where the velocity is equal to the adiabatic speed
of sound. The conditions of passage through this point are given in [5]. In dimensionless
form they are’
A R @Al Jea A (2.5)
Pa 2 1.5 4-341T 3/ p, 2Tq
Here x,, Ty, p, are the values of the dimensionless parameters at the point where the
velocity is equal to the adiabatic speed of sound, ug2=yP /p. In deriving (2.5) we made
use of the expression for the y = (3 In P/3 In p)g of an ideal gas with radiation (S is the
specific entropy),
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1 (1+A1T"/P)“]
T=Tr A [‘ + 15 134T p (2.6)

Together with (2.4) written out for the point x,, relations (2.5) determine 4,, %4, Ty, pg
as functions of 4. Sample values of these parameters appear in Table 1.

Table 1

A 10¢ 5.10° ‘ 104 1 700 500 200
As 9.803.108 4.876.108 9.588.102 ’ 668,0 474.9 187,5
Xq 2.721.40"2 | 3.469.10°% | 6.173.1072 ; 0.07033 0.07962 0.1122
Pa 6.413.1078 1.309-104 | 7.005-407% | 1.021.1078 | 1,458-10"® | 3.878-107®
T, 4£.002-1072 5.076-10"2 | 8.870-1.72 ~ 0.1005 0.1131 0.1564
A 100 50 | 20 l 15 10 9.5 9
Ag 93.20 46.84 19.75 15.36 11.055 10.63 10.21
Xa 0.1459 0.1898 0.2663 0.2946 0.3371 0.3425 0.3482
Pa 8.161.1072 0.01709 | 0.04373 | 0.05768 | 0.08319 0.08692 0.09098
Ta 0.1997 0.2541 0.3431 0.3742 0.4186 0.4242 0.4301
A 8.5 8 7.5 7 8.5 6 5.5
As 9.785 9.365 8.946 8.529 8.114 7.7 7.20%
Xa 0.3544 0.3614 0.3680 0.3754 (0.3833 0.3919 0.4012
Pa 0.0954 " 0.1002 0.1055 0.1114 0.1179 0.1251 0.1331
Ta 0.4362 0.4426 0.4494 0.4566 0.4641 0.4721 0.4804
Ay 5 &5 l 4 3.5 3 2 1
As 6.883 6.478 6.076 5.677 5.283 4.509 3.767
X 0.4112 0.4217 044335 0.4460 | 0.4596 0.4886 0.5074
Pa 0.1421 0.1522 0.4637 0.1768 | 0.1917 0.2275 0.2635
T 0.4892 0.4985 0.5082 0.5181 0.5282 0.5456 0.5388
Ax 0.5 0.4 0.3 0.2 0.14 0.13 0.128
As 3.412 3.342 3.269 3.492 3.1396 3.130 3.428
Xa 0.4705 0.4399 0.3902 0.3043 | 0.4023 0.02084 0

Pa 0.2471 0.2267 0.1907 0.1329 { 0.02614 | 2.671-1073 0
Ta 0.4754 0.4381 {.3817 0.2756 | 0.09330 | 0.01957 0

In writing out (2.5) we assumed that in a stream of material satisfying the conditions x =
=T =p=0, the flow at infinity must be supersonic. In this case there exists a peint Zq
where the adiabalic velocity of sound is attained. However, there exists a class of polytro-
pic flows in the spherically symmetrical gravitational field of a constant mass where pas-
sage through the speed of sound is impossible. These are polytropic flows with indices n >
> 1.5. Flow with n = 1.5 is degenerate and proceeds at a constant Mach number [6]. Polytro-
pic flow with n = 1.5 is limiting as 4| + 0 for solution (2.4). For 4, = 0 there exists an
exact solution satisfying the conditions 43 = 3, p=x3/2, T = x at'infinity. The Mach num-
ber in such a flux is 3/5; the velocity is always equal to the isothermal speed of sound. For
a sufficiently small A4y # 0 there is no passage through the adiabatic speed of sound. This
is reflected in the fact that for sufficiently small 4, there is no solution of algebraic system
(2.4), (2.5) which determines x4, Ty, Par A3. Let us find the limiting value of 4, for which
the flow becomes supersonic. Fommal y. as 4; » A, the solution of system (2.5‘. (2.5) must
yield x; + 0. Then, by virtue of the restriction Az > 2, we find from the first relation of {2.5)
that p,~ 0 3/2, while the second relation of (2,5) is fulfilied for %o+ 0if T+ Bz, Sub-
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stituting these expansions into (2.4), (2.5) and retaining the lgading terms, we obtain

2 s 3 [ EUR
m=3ta a=(r7z)" B=pera sta=2(g)rn G

The last relation of (2.7) yields the value 4, = 0.128.
For Ay <Ay, wehave A3= 3+ A;; for x » 0 the asymptotic solution is of the form
2\¥ 1\
paz’, TPz, B=oled/3, (‘5‘) ’(3! + A1 — 2‘&5) et (28
For A; > A4, the quantity A is determined by the simultaneous solution of system
(2.4), (2.5); asymptotically, the solution for x + 0 is of the form
pazt, TwmBz", a=[23+ 41— A)[~", B=aeld/s (2.9)
Comparison of (2.8) and (2.9} with (1.14) and (1.15) indicates that for any 4, as 4, » o
the asymptotic form changes as x + 0. Existence of a limiting A ,,, shows that passage
through the adiabatic speed of sound is possible only if the ratio of the radiation pressure
to gas pressure is not smaller than 4, /4= 0.032 at the point where the isothermal speed
of sound is reached, This follows from the definition of 4; in (1.9).
For large A, the solution satisfying the conditions x = p= T = 0 is obtained for

3 .
As=A1 T3 — 37 347

In the subsonic range for large 4, the approximate solution is of the form T = x,
p= a8
For 0 < 4, <o the asymptotic form for large x is
T =%¥pdsz (In 2)-2, p = (/g)'4144%2° (In z)-

3. Solution of the problem in the general case. In order to solve system
(1.11), (1.12) in the general case we must proceed from the singular point x = p=T = 1 ac~
cording to expansion formulas (1.13) and integrate system (1.11), {1.12) numerically, Taking
A, and 4, for a single 4,, we obtain T = p= 0 when x = 0, Since the pointx=p=T=0is
singnlar, it follows that f‘:)r arbitrary 4, the solution behaves nonanalytically. For 4; smal~
ler than that sought, T > 0 for x == 0. For larger 4; we have T'= 0 for pr, x7 > 0. In the
neighborhood of the point I'= 0, pq, %4 > 0 system (1.11), (1.12) has the asymptotic form

dz T8 dp prt
Ar=%op: ar =zg 20
The solution is of the form
z = 2p + (@/4pr) T4, p=pp+Tpp/zp*

Thus, for large 4, the integral curves T{x), p(z) lie in the domain x > x4, The values of
A, as determined by 4, and 4, for which the conditions x = p=T = 0 are fulfilled appear
in Table 2. From Table 2 we see that for a fixed 4, the values of 4 ; change little with
changes in A,. For A; > 4,, the function 4;(4,) is monotonéus. Consideration of Formula
(2.2) and Tables 1 and 2 yields the following observations. The derivative (3 43 /04,)4, is
positive for 4> 4, along the solutions satisfying the conditions at infinity. in the inter-
val 3 <4, < 3.5 this derivative as a function of 4, passes through identical zero and be-
comes negative. In the interval 8 < A <8.5 the derivative as a function of 4, once again
passes through identical zero and is always positive for large 4,. For 4, < A, the depen-
dence of A; on 4, is nonmonotonous. For small 4, we find that taAa/aA 2)A1 > 0; then, at
A, 7= 10 for A; = 0 the derivative changes sign and remains negative all the way to 4, = oo,
Where the derivative (04373404 , changes sign the quantity 4, increases monotonously
with 4, and becomes infinite for 4, = 4, .

When 4, < A, , beginning with some 4, dependent on 4, the flow at infinity is subson-
ic for 4y > A, ., while for A; = A, we have 4, = oo, In the case 4, > 4,, the quantity 4,
is given by tﬁe relation

As—2
Av= M@+ 41— Ao} + Z 7 =0 (3.1)

The total energy flux carried to infinity is equal to zero, The asymptotic form at the
point x = O is of the form

p =az’, T = Pz, B =% (45 — 0.5 /a9
Here ais arbitrary. At the point 4 ,,, the derivative (34 ,/04 ;)4 , is negative and equal
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Table 2
A 0 0 0 0 [5-107¢/5.-1074/5-107¢/5-107¢/ 0.01 0.01 0.01
As 0.1 1 10 100 | 0.1 1 10 100 |0.1 i 10
Ay | 2.84 |2.945]3.056(3.012| 2.84 |2.945]3.05613.012(2.845| 2.955 3.06
Ax 0.01 0.1 0.1 ]0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5
Az 100 | 0.1 1 10 20 50 100 | 0.1 1 10 50
As |3.0212.92]3.0313.125(3.1233.143[3.109|3.247| 3.34 | 3.405 3.4
A 1 1 1 1 1 2 3 3 5 5 5
A 0.1 1 5 10 50 1 1 5 10.02 0.1 0.2
Ag |3.65713.722(3.756{3.763]3.765[ 4.49 | 5.28 |5.281{6.907| 6.896 6.890

5 7 7 10 10 10 15 15 15 15
. 5 |04 1 . . 1 0.01| 0.02] 0.1 0.5
As |6.885|6.883| 8.54 | 8.53 111.02]44.04[11.05|15.17|15.24| 15.32 15.35

A1 20 20 50 50 50 50 100 | 100 | 100 100 100
Ag 0.02| 0.2 |5-107¢ 0.04} 0.02] 0.01| 1074 |5-107¢]0.002| 0.01 0.02
As [19.48|19.71| 44.1 [45.72(46.12|46.68| 85.2 [ 86.8 | 89.1 | 91.55 92.15

Ar 100 | 200 | 200 | 200 [ 200 | 500 | 500 | 700 | 700 10® 108
0.1 | 107¢ |5-1074 0.01 | 0.05 | 40~ | 0.01 | 1074 {5.1073| 10~¢ 1073
Ay |92.95(170.7|176.2|185.2(187.1(439.5|472.2] 626 | 664 | 906.5 943.5

to the corresponding quantity computed from Formula (3.1). For 4,> 4,,, it is always the
case that 43> 3. The solution with subsonic flow at infinity correspon?s to the evapora=~
tion state considered in [7] .

In order to apply the above solution to efflux from the corona of a red giant it is neces-
sary to know the solution in the subsonic range. To find this solution for a known 44(4,,
A,) it is necessary to proceed from the point x = p= T = 1 according to Formulas (1.13) and
to integrate Egs. (1.11), (1.12) for x > 1,

The quantity v = 1/(pr2\/T) is the dimensionless velocity or the ratio of the flow rate
to the isothermal speed of sound. Table 3 contains the values of x, p, T for v = 1/6, 1/10,

Table 3
A 0.1 0.1 0.1 0.1 |o0.5 0.5 0.5 0.5
As 0.1 1 10 oo 0.1 1 10 )
As 2.92 3.03 3.125 3.10 | 3.247| 3.34 3.405 | 3.412
1] =| 8.10 28.3 96.3 128 9.10 | 27.7 36.6 42.3
V=3 g 154 1020 7320 {1.16-10¢]| 187 1090 1950 2170
6.575 22.2 57.9 70.9 | 7.08 17.8 23.3 24.5
z | 13.9 77.6 222 280 16.9 | 61.9 84.7 89.6
Ve £ 581 8280 |4.56-10¢| 6.70-10¢| 808 6480 [1.08.100{1.18.10¢
10 111 52.7 116 137 12.6 35.1 44.2 46.1
. | #]30.2 263 596 722 42.6 166 224
Vee|p | 3742 |1.14-10%4.34-105|5.96-105| 6740 | 6.1-10¢ 108
20|71 23.9 147 268 306 29.0 80.8 101
1| x| 49.9 1205 281 369
V=g5|p | 1.20-10¢ 2.0-108 2.11-108 3.29.10¢
T | 39.0 475 127 155

continued
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Table 3, continued

A 1 1 1 1 5 5 5 5

Ay 0.1 1 5 o |0.02 | 0.1 0.5 0
A 3.657 | 3.722 | 3.756 | 3.767 |6.907 | 6.896 | 6.888 | 6.883
(=] 10 223 | 24.8 | 274 | 7.66 | 9.0 9.76 | 10.0
V=glp| 220 798 950 1099 | 146 | 191 218 228
T| 7.45 | 13.9 | 15.1 | 16.4 | 5.74 | 6.48 6.87 | 17.00

| 19.3 | 46.2 | 5.4 | 55.2 | 12.7 | 15.55 | 17.0 17.5
Vot 1020 | 4200 | 4940 | 5610 | 536 | 747 864 907
O f| 134 25.9 27.9 29.5 9.05| 10.5 11.2 11.4
1|z]| 48.4 114 125 133 | 25.4 | 31.8 | 34.9 35.9
V=g5lp | 8550 |3.5.40¢ |4.03-10¢|4.48.10¢| 3070 | 4540 | 5290 5555
T{ 299 | 56.2 | 59.9 | 62.7 | 16.7 | 19.8 | 21.1 21.6

12| 828 204 216 | 37.3 | 47.8 | 52.4 53.9
V=g5| p | 2.98-10¢ 1.3-105| 1.43.10°| 8530 | 1.28:40% | 1.49.10¢| 1.57-108
17| 477 9.4 | 95.3 | 23.95| 28.5 | 30.4 31.0

1/20, 1/30 for certain values of 43, 4,.
For 4, = 0 we have 4; = 0.8186(1 + 4,) + 2; given below are the values of the dimen-
sionless solution p(x) and T(x) (the same for all A,) for various values of 1/v and x:

Table 4
1/v=2 4 6 8 10 12 14
x=2.32 4.59 6.53 8.27 9.88 11.4 12.8
p = 7.59 43.9 114 218 358 533 743
= 3 5.07 6.34 7.45 8.5 9.51
1/v == 16 18 20 26 30 36 40
x=14.2 15.4 16,7 20.2 22.4 25.5 21.5
p =991 1270 1590 2770 3735 5460 6800
T =10.5 1.4 12.3 14.8 16.3 18.5 19.9
1/v = 46 50 60 70 80 90
x == 30.4 32.2 36.6 40.8 44.7 48.5 52.2
o = 9080 1.08-10¢ 1.57-10% 2.15-10¢ 2.83-10¢ 3.60-10¢ 4.46.10%
T=219 23.2 26.3 29.2 32.0 34.7 37.3

If the initial conditions (e.g. in the stellar corona) are known, then the resulting solu-
tion enables one to determine the mass flux. A complete solution requires knowledge of
three of the following quantities: L, rg, Ty, pg, ug. The remaining two quantities are not
independent. Expressing these dimensional quantities in terms of dimensionless quantit-
ies and parameters, we obtain

L 4dnecGM Ay Aq

k4 Ag
. __(éi’i)‘/l(GM)’/' 1 3R\U [ ¢ VR \' y o (3.2)
’ e Rl (424,44)" gz * PO (E) (W) (Ar*A249) " 4,
3cR" \" . 3¢ 1, 2
To= (m) (A2 ds a9 T, = B (g5 ) (At A T

Determining the dimensionless parameters 4 , sz % from three quantities (e.g., L, Tos
ug), making use of (1.10) and (2,2), and Tables 1 to 4, we obtain the initial values poand T,
and determined the mass flux,

(GM)'h ( 46\ [ ¢ \Us (A?Aads)”s (3.3)
Amph = 4 R 3 ) ( " ) Ay A2

The author is grateful to Ia.B. Zel'dovich and I.D. Novikov for their interest in the pres-

ent study.
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The present paper deals with a quasilinear second order parabolic equation describing an
unsteady one-dimensional infiltration and investigates the time asymptotic of the solution
of the proble m of formation of moisture saturation profile when the infiltration starts at the
surface. The existence of a limiting profile expanding with a constant velocity is proved
and estimates are given for the speed of approach to this profile with increasing time, when
the soil has unlimited capacity. An estimate of the speed of approach to the steady (homo-
geneous) distribution is also given for the soil of limited capacity.

During the infiltration into a homogeneous soil, moisture u(t, x) of the soil being a func~
tion of time ¢ and of depth x of the layer (the X-axis is directed downwards), satisfies an
equation of the type

du @ du 8K (u) 1)
’TaT“EE[D(“) oz ]— az

D(u)>0, K(u)>0, D'(u)>0, K'(¥)>>0, K" (u)>p>0when(u>u>0)
Taking into account initial moisture distribution in the soil and infiltration on the sur-
face of the ground, we obtain the following boundary condition:

u(@,0) =u (@¢>0), u(0, )=y (2) V<< 2z )

u < uE) <u  (lim U (z) = ug) when z—»4-00) @
Here u; = 1 denotes the moisture corresponding to full saturation of soil on the earth

surface.
In the presence of ground water at the depth % = X, our boundary condition assumes the
form

uft, 0) = uy, u(t, X) = uy, u(0, z) = uy ()
0Kz X, LU (D)< y 3

The problem of determination of the limiting moisture profile during infiltration into the



